
Toward Faster Packing and Unpacking of MPI
Datatypes?

William D. Gropp, Ewing Lusk, and Debbie Swider

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, Illinois 60439

Abstract. The Message Passing Interface (MPI) standard provides a
powerful mechanism for describing non-contiguous memory locations:
derived datatypes. In addition, MPI derived datatypes have a key role in
the MPI-2 I/O operations. In principle, MPI derived datatypes allow a
user to more efficiently communicate noncontiguous data (for example,
strided data) because the MPI implementation can move the data with-
out any intermediate copies to or from a contiguous buffer. In practice,
however, few MPI implementations provide support for datatypes that
performs better than what the user can achieve by manually packing and
unpacking the data into contiguous buffers before calling MPI routines
with contiguous memory regions. We develop a taxonomy of MPI data-
types according to their memory reference patterns and show how to
efficiently implement these patterns. The effectiveness of this approach
is illustrated on a variety of platforms.

1 Introduction

The Message Passing Interface (MPI) standard [3, 4] provides a powerful and gen-
eral way of describing arbitrary collections of data in memory. Special cases al-
low users to easily define common cases such as strided data (MPI Type vector)
and indexed data (MPI Type indexed). Careful modification of the extent of
a datatype provides additional ways to describe regular patterns in memory.
Such concise and powerful descriptions are necessary to eliminate unnecessary
memory motion; without them, the user must copy any data to be sent to a
contiguous buffer, pass that to the send routine, and then unpack the data when
it is received. In principle, the use of derived datatypes allows the MPI imple-
mentation to provide superior performance over what the user could achieve if
messages could only contain contiguous regions of memory. Unfortunately, the
performance of programs using MPI datatypes is often poor compared to just
letting the user pack and unpack the data. Even when an MPI implementation
packs and unpacks data into and out of contiguous buffers during send and re-
ceive operations, the implementation is likely to be slower that the user since its
? This work was supported by the Mathematical, Information, and Computational Sci-

ences Division subprogram of the Office of Computational and Technology Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38.

algorithms will be more general. It is a fast replacement for this algorithm that
we are proposing in this paper. This paper shows how the performance of MPI
derived datatypes can be improved by recognizing and optimizing for regular
patterns in MPI datatypes.

A number of requirements for processing MPI datatypes must be kept in
mind while designing a faster approach. Inside an MPI implementation, large
messages are normally broken into smaller pieces; for example, they may be
broken into packets with a fixed maximum size or there may be a limit on the
maximum message size that can be sent at one time. The ability to break up
long messages is also required for the efficient implementation of some collective
operations. Thus, one critical requirement is that it must be possible to start
and stop the processing of a datatype at nearly arbitrary points. In addition, the
design should be modular enough that other MPI vendors can adopt its good
features without extensive redesign of their implementations.

Another requirement is a practical one: the new approach must have a small
number of cases so as to not be too complicated to implement or maintain. It
should efficiently handle common datatypes and patterns of access, as well as
common data alignments. Finally, it must handle both the MPI-1 and MPI-2
datatypes; this includes MPI Type create resized and MPI Type create darray.

In the rest of this paper, we shall assume that we are implementing datatypes
for a parallel machine with a single data representation; this allows us to view all
data as MPI BYTE and to ignore data conversion issues. Many of the techniques
described in this paper can be applied to the heterogenous case, but restricting
the discussion to MPI BYTE both simplifies some issues and provides important
opportunities for additional optimizations.

The approach taken in this paper is based on observing that MPI datatypes
require only a small number of data movement primitives, and that these prim-
itives include not only a block copy (e.g., memcpy), but also a small collection
of loops that contain block copies and pointer offset operations. Several MPI
datatypes may map onto the same primitives. By optimizing for these loops,
significant performance improvements in the processing of MPI datatypes can
be achieved.

In Section 2 we show the performance of datatypes on a variety of MPI
implementations, both MPICH and vendor-optimized, and compare with user-
packing/unpacking that does not use the MPI derived datatypes. These results
demonstrate both that current implementations can be improved and that the
MPI Type vector optimization in MPICH, which this paper generalizes, provides
a significant performance improvement. In Section 3 we introduce the basic loops
out of which the MPI derived datatypes can be built. Section 4 measures the
effect of the new approach.

2 Performance of MPI Datatypes

We can see the need for an improvement in the performance of MPI datatypes by
testing the performance of two different representations of a vector and compare

them to having the user pack and unpack the vector into contiguous memory.
Table 1 shows the results of using

MPI_Type_vector(1000, 1, 24, MPI_DOUBLE, &newtype);
MPI_Type_commit(&newtype);
MPI_Send(buf, 1, newtype, ...);

as “Vector,”

MPI_Datatype t[2];
MPI_Aint offset[2];
int blen[2];
offset[0] = 0;
t[0] = MPI_DOUBLE; blen[0] = 1;
offset[1] = sizeof(double)*24;
t[1] = MPI_UB; blen[1] = 1;
MPI_Type_struct(2, blen, offset, t, &newtype);
MPI_Type_commit(&newtype);
MPI_Send(buf, 1000, newtype, ...);

as “Struct,”, and

double tmp[1000]; int i;
for (i=0; i<1000; i++)

tmp[i] = buf[24*i];
MPI_Send(tmp, 1000, MPI_DOUBLE,

...);

as “User.” Note that for these systems, it is always more efficient for the user
to manually form a contiguous copy of the data and send that than it is to use
the MPI derived datatypes. In the case of the more convenient struct form, it is
significantly better to avoid the MPI datatype.

Table 1. Performance for several different ways of sending 1000 doubles separated by
a stride of 24 doubles on three high-performance systems. Numbers are bandwidths in
MB/sec. See text for details.

System Vendor MPI MPICH (old) User (with
Vector Struct Vector Struct vendor MPI)

ASCI Blue Pacific IBM SP 3.8 2.9 6.7 1.0 9.5
ASCI Blue Mountain SGI Origin 2000 7.6 3.1 20 2.6 44
ASCI Red Intel TFLOPS 32 3.3 32 3.3 35

Note that for the “vector” case, the portable MPICH implementation [2]
is faster than the vendor implementations that were tested. MPICH handles
MPI Type vector and MPI Type hvector specially; the method used is a proto-
type of the approach described in this paper.

3 Basic Memory Operations

An MPI derived datatype can be represented as a tree whose nodes are other MPI
derived datatypes and whose leaves are MPI predefined datatypes. The datatype
tree describes a series of memory move operations to be used in moving data from
or to a contiguous representation to or from the layout described by the datatype
tree. The obvious way to implement MPI datatypes is to build a routine that
recursively traverses this tree in a depth-first manner; this is the approach taken
by the MPICH implementation. Other approaches are possible; for example, the
MPI-F [1] implementation builds a finite automaton representing the operations
in the datatype.

In this paper, we describe a finite automaton whose basic operations include
three special loops; these loops represent all of the MPI derived datatypes. In
essence, we are replacing some subtrees of the datatype tree with special opti-
mized leaf nodes.

An alternate way of looking at this approach follows. For efficiency, we need
a compact compilation of the data move instructions specified by the datatype.
The key is to find an efficient yet simple representation; because all uses of MPI
datatypes contain a repitition count, nested loops naturally occur. A classic
technique for improving the performance of nested loops is to do loop merging
or fusion (converting several loops into one). Another common technique is to
replace general transitions (finite state machine or recursive calls) with special,
optimized steps (such as loops).

Let us first consider three basic operations and describe how they relate to
the MPI derived datatypes. To simplify the discussion, we consider only the
“pack” case (moving data to a contiguous buffer by reading from data laid out
according to the MPI datatype). The unpack case is similar, exchanging source
and destination. The following subsections define the operation pack datatype.

3.1 Strided

The first operation is the strided copy. This is a block move followed by an rela-
tive offset in the source. This is a natural for MPI Type vector and for datatypes
created with the MPI-2 function MPI Type create resized (in both cases when
the underlying type is contiguous). It is also important for datatypes created with
MPI Type struct and containing an MPI UB (the MPI-1 method for accomplish-
ing nearly the same effect as the MPI-2 function MPI Type create resized).
We use memcpy to represent an optimized block-move operation; in practice,
an implementation may optimize for single word moves or use any other tech-
nique that achieves high copy rates. (One implementation uses loads and stores
through pairs of double precision floating point registers.) We also assume that
the source of the data to be moved is pointed at by base and the destination
buffer is pointed at by dest; these pointers are to byte-sized values. In C terms,
the operation is

src = base;

for (i=0; i<n; i++) {
memcpy(dest, src, len);
dest += len;
src += offset;

}

Note that in the general case where the input datatype to MPI Type vector
is not a contiguous datatype, the memcpy operation may be replaced with a
pack datatype operation.

Note that an important part of the datatype operation, setting the position
for the next datatype to begin (based on the extent of the datatype), is not
included here. The MPI Type vector and MPI Type create resized cases differ
here, and by making this final step separate, we can unify these cases.

3.2 Variable Length Indexed

The next operation is the most general and moves blocks of variable length from
specific locations in memory. In C terms, it is

for (i=0; i<n; i++) {
memcpy(dest, base + offset[i], len[i]);
dest += len[i];

}

where base is the buffer address in a routine such as MPI Send (a typical value of
base for these operations is MPI BOTTOM, of course). This implements MPI Type indexed
and MPI Type struct.

3.3 Fixed Length Indexed

An important special case (enshrined in the MPI-2 routine MPI Type create indexed block)
has constant lengths; its C code is

for (i=0; i<n; i++) {
memcpy(dest, base + offset[i], len);
dest += len;

}

This loop represents a gather operation.

3.4 Common Representation of Loops

In summary, there are three basic non-contiguous memory operations:

1. Fixed length block with offset relative to the previous element
2. Variable length block with absolute offset
3. Fixed length block with absolute offset

The fourth combination, variable length block with relative offset, does not occur
in MPI.

These three loops are parameterized with the following values:

looptype Which of the three loops
n Loop count (number of separate blocks to move)
len[] Length of each block (array of size n or scalar)
offset[] Offsets (array of size n or scalar)
isleaf Indicates whether move operation is memcpy or pack datatype
extent Final extent

In the case where single words are moved, these loops can be highly optimized;
for example, taking advantage of prefetch or non-blocking load instructions.

In addition, when working with complex, derived datatypes, we may also
need either a pointer or array of pointers to datatypes. That is, for non-leaf
nodes in the tree representing a derived datatype, the operation to apply in the
loops above is “pack datatype,” not “memcpy”, and we need to know what that
datatype is. In addition, we may need to know a blockcount for the number of
instances of a derived datatype (in the leaf case, this information is combined
with the datatype’s length to compute the len value).

A number of coding optimizations are possible within this scheme. These are
discussed in [?].

4 Experiments

Table 2. Performance for a resized datatype

MPICH SGI
Type Size Time MB/s Time MB/s

Struct 100 0.000056 14.2 0.000204 3.9
User 100 0.000041 19.7 0.000028 28.4
Struct 10000 0.0019 42.9 0.0117 6.8
User 10000 0.00133 60.3 0.00093 86.3

We illustrate the benefits of the datatype approach of this paper with two
experiments. In the first, we send C doubles with a stride of 16 doubles using a
MPI Type struct containing an MPI DOUBLE and an MPI UB. We compare MPICH
against the SGI implementation of MPI on an SGI Origin 2000 with 250 MHz
R10000s. The results are shown in Table 2. The rows labeled “Struct” use the
MPI derived datatype; the rows labeled “User” have the program use a loop to
pack and unpack the data to and from a contiguous buffer. Note that the MPICH
“struct” case, while still slower than “user” case, is much faster than the vendor’s

“struct” case. Further, the current implementation of MPICH does not exploit
the option of packing and unpacking directly to and from the communication
buffers; instead it allocates a temporary buffer, moves the data into that, and
then sends that temporary buffer by copying it to and from the communication
buffers. Eliminating this extra copy will improve the performance of MPICH.

The difference in the performance of the “User” rows for MPICH and SGI
are due to the greater performance of contiguous send and receive in the SGI
implementation of MPI.

The second example illustrates the advantage of the push/pop optimization.
Consider the case of sending part of the face of a 3-dimensional cube to another
processor. Specifically, let the cube have sizes (nx,ny,nz) and the partial face
that we want to send is a y-z face of size (my,mz). To construct a datatype
describing this face, we need

MPI_Type_vector(my, 1, nx, MPI_DOUBLE, &t1);
MPI_Type_hvector(mz, 1, nx * ny * sizeof(double), t1,

&newtype);

The performance of this derived datatype on an SGI Origin 2000 is shown in
Table 3. The cube is 200×200×200 is size and the face is 100×100. The MPICH
row shows the performance using the ideas in this paper (but still making the
extra copy described above). The SGI line shows the performance of the SGI
implementation of MPI. The third row of data, labeled MPICH-old, shows the
benefit of the adding the push/pop optimization.

Table 3. Performance for a vector of vectors datatype

System Time MB/s

MPICH 0.0019 42.6
SGI 0.0066 12.2
MPICH-old 0.0031 26.0

5 Conclusion

We have shown how to divide the many MPI datatypes into a few categories that
can be implemented efficiently. Even though our results are preliminary, and do
not include all reasonable performance optimizations, we already provide per-
formance with derived datatypes that is nearly as good as what a programmer
can do when packing and unpacking contiguous buffers “by hand.” Further im-
provements, particularly those that eliminate the extra copies that packing into
and out of a contiguous buffer require, should raise the performance to equal or
better than what the application programmer can accomplish.

References

1. H. Franke, P. Hochschild, P. Pattnaik, J.-P. Prost, and M. Snir. MPI-F: an MPI
prototype implementation on IBM SP1. In J. J. Dongarra and B. Tourancheau,
editors, Environments and Tools for Parallel Scientific Computing, pages 43–55.
SIAM, 1994.

2. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Computing,
22(6):789–828, Sept. 1996.

3. Message Passing Interface Forum. MPI: A Message-Passing Interface standard.
International Journal of Supercomputer Applications, 8(3/4):165–414, 1994.

4. Message Passing Interface Forum. MPI2: A message passing interface standard.
High Performance Computing Applications, 12(1–2):1–299, 1998.

